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Exper imen ta l  data a re  p r e sen t ed  on the r e s i s t i v i t y  and t h e r m o - e m f  of tin ove r  the t e m p e r a t u r e  
range  - 1 8 3  to 700~ on t h e r m a l  conductivity f r o m  - 1 8 3  to + 300~ and on the speed of u l t r a -  
sound f r o m  20 to 400~ Anomal ies  appear  in the t e m p e r a t u r e  curves  cor responding  to po ly-  
morph ic  t r ans i t ions  in the tin. 

Study of the the rmophys ica l  p r o p e r t i e s  of tin is of in te res t  both for  the development  of theory  and for  
P rac t i ca l  goals .  

Three  modif icat ions  of tin in the solid state have been es tab l i shed:  gray  tin,  (~-Sn; white, fl-tin, and 
"y-tin, w h i c h m a y t r a n s f o r m  to each  o ther  at ce r t a in  t e m p e r a t u r e s  according  to the pat tern  ~-Sn ~ fi-Sn 
"y-Sn ~ liquid tin.  Of these modif ica t ions ,  g ray  tin has semiconduc tor  p r o p e r t i e s .  It c ry s t a l l i ze s  in a dia-  
mond lat t ice and is s table below 13.2~ Above this  t e m p e r a t u r e  a - S n  t r a n s f o r m s  to f i -Sn ,  which c r y s t a l l i z e s  
in a te t ragonal  la t t ice .  The highest  ~ -  and fi-tin convers ion  ra t e  occurs  at -40~ Upon heating of white tin 
above 161~ it t r a n s f o r m s  to the rhombic  modif icat ion,  "y-tin. 

The three  modif ica t ions  are  c h a r a c t e r i z e d  by different  densi t ies :  ~ ,  5.846; fl, 7.298, and T, 6.600 
g / c m  3. 

The s t ruc tu re  of liquid tin has  been examined  in many  s tudies ;  the i r  r e su l t s  indicate that in tin an in- 
complete  t r an s fo r m a t i on  of d i rec ted  bond to meta l l i c  occu r s ,  with convers ion  of the c rys ta l l ine  s t ruc tu re  into 
one of the s t r u c t u r e s  c h a r a c t e r i s t i c  of meta l l i c  bonding - bcc  o r  cph. Khrushchev [1] explains  the p re sence  of 
l a t e r a l  intensi ty m a x i m a  in the intensi ty  cu rves  and rad ia l  distr ibution function as the resu l t  of d i rec ted  bonds 
n e a r  the c rys ta l l i za t ion  point.  These  m a x i m a  d i sappea r  with inc rease  in t e m p e r a t u r e .  Af ter  ana lys is  of v a r i -  
ous expe r imen ta l  data Turakawa et  al .  [2] p roposed  that liquid tin n e a r  the mel t ing  point is  a sy s t em of o rde red  
reg ions  cor responding  to g ray  tin s t ruc tu re  d is t r ibuted  in a meta l l i c  s t ruc tu re .  Conductivity and v iscos i ty  
s tudies  [3] have shown that  tin has an anomaly  in the r e s i s t ance  t e m p e r a t u r e  coefficient  at 520~ this was r e -  
lated to a change in a tomic  packing,  i . e . ,  to a change in c lose  o rde r .  

A n u m b e r  of s tudies [3-10] have cons idered  the kinetic p r o p e r t i e s  of tin above room t e m p e r a t u r e .  It 
follows f r o m  them that  with the exception of [3, 7] the t e m p e r a t u r e  cu rves  of the var ious  kinet ic  p r o p e r t i e s  
show no s ingular  points  cor responding  to s t ruc tu ra l  t r ans fo rma t ions  of the var ious  modif icat ions in tin. How- 
e v e r ,  the avai lable  informat ion on the kinet ic  p r o p e r t i e s  of tin at low t e m p e r a t u r e  is ve ry  l imited.  

The p r e s e n t  study is  dedicated to an invest igat ion of the t h e r m a l  conductivity,  r e s i s t i v i t y ,  t h e r m o - e m f ,  
and speed of u l t rasound in Sn-000 o v e r  a wide t e m p e r a t u r e  in te rva l  encompass ing  both the solid and liquid 
phase .  

E lec t r i ca l  Res i s t ance .  The exper imen ta l ly  de te rmined  t e m p e r a t u r e  dependence of e l ec t r i ca l  r e s i s t iv i ty  
in tin is shown in Fig .  1. Measu remen t s  were  made by the fou r -p robe  method with an accuracy  of 1%. The 
tin t r a n s f o r m a t i o n s  noted above were  found f r o m  changes in the t e m p e r a t u r e  coefficient  of r e s i s t i v i t y  in the 
curve  p = f(t) at t e m p e r a t u r e s  of 50, 100, and 520~ 

Table 1 p r e s e n t s  values  of dp/dt  cor responding  to the va r ious  modif ica t ions .  The t e m p e r a t u r e  in terva ls  
a re  accura te  [o ~10~ 
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Fig. 1. Elec t r ica l  res is t iv i ty  and the rmo-emf  of 
tin vs t empera ture :  1) a ;  2) p. t, ~ p, pf~.cm;  
c~, #V/deg.  

The lowest value of the tempera ture  coefficient,  corresponding to ~-Sn, is evidently connected with the 
semiconductor  proper ty  of that phase.  

Upon transit ion to the liquid phase the res is t iv i ty  of tin increases  by a factor  of two, while the tempera-  
ture coefficient of P dec reases  by approximately a factor  of two. 

As was indicated above, diffraction studies have establ ished that close order  in liquid tin is real ized by 
a combination of the two types gray tin and white tin. Above 520~ the coordination number  takes on a new 
value. Correspondingly,  the change in dp/dt is related to a change in close order ,  i . e . ,  of the chemical  
nature of the a toms,  the geometry  of their  disposition, and the absolute distance between them, all of which 
together  determine the charac te r  of the bonds in the mater ia l .  

The tempera ture  coefficients of res is t ivi ty  are positive in sign over the entire temperature  interval.  

T h e r m o - e m f  (c~). The the rmo-emf  was measured  with two pieces of equipment. With the f i rs t ,  de- 
signed for tow- tempera ture  studies of c~, the emf was measured  relative to copper with tempera ture  deter -  
mined by c o p p e r -  Cons tantanthermoeouples .  To calculate the absolute values data on the absolute thermo-  
emf of copper  f rom [131 was used. With the second apparatus ,  designed for  high tempera tures  f rom room to 
700~ the t he rmo-emf  was measured  relat ive to Alumel, with temperature  measurement  by Chromet - Alumet 
thermocouples .  Absolute values of t he rmo-emf  obtained with both devices were easi ly r e p r o d u e i b l e i n t h e t e m -  
pera ture  range 20-150~ The measuremen t  uncertainty c~ was no more  than 3.5%. The data agree well with 
[9, 12] in the range 232-350~ 

Figure 1 shows curves  of c~ = f(t), where in both solid and liquid states the singular points are distin- 
guished by a change in the tempera ture  coefficient dc~/dt. For  the ce and "y phases dc~/dt is positive in sign, 
but is negative for the /3 phase.  In the liquid state up to 520~ dc~/dt is negative, and above this temperature  
it is posit ive.  

Regel '  [8] has related the low absolute value of c~ in metals  such as Cd, Zn, Pb, Hg, In, and Sn, as 
compared  to the t h e r m o - e m f ' s  of metals  of the f i rs t  group, to amixed  electron-hole  conduction mechanism.  

Thermal  Conductivity (~) .  The thermal  conductivity of liquid tin has been studied thoroughly. Data 
was presented in the review [10], with scat ter ing near  the melt ing point of ~ 10%, while the temperature  coef-  
ficients in the liquid phase differ significantly f rom each other ,  even being of opposite sign. Data on the ther -  
mal conductivity of tin in the solid state is very  sparse  in the l i te ra ture ,  and the scat ter ing is grea ter  than 
20%. At low tempera tures  thermal  conductivity has not been studied at all. 

TABLE l .  ~ p / ~  of Tin vs Tempera tu re  

Temperature interval, "C 

Op/Ot. 
u~ ..cm-deg 

from-183 
to --50 

0,04227 

from--50 from-~-lO0 from 232 
to -{-I00 to 232 to 520 

0,05133 I 0,05770 I 0,02500 

from 520 
to 700 

0,02780 
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Fig.  2. 
tin vs t e m p e r a t u r e :  1) X; 2) a; 
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Thermal eonduetivity and speed of sound in 
3) a [16]. t ,  ~ 

The p r e sen t  study inves t igated the t h e r m a l  conductivity of tin ove r  the t e m p e r a t u r e  range - 1 8 3  to 
+300~ encompass ing  the en t i re  po lymorphic  t r ans fo rma t ion  range.  Measu remen t s  were  p e r f o r m e d  by the 
absolute s ta t ionary  plane l aye r  method.  The hea t e r  was located between two identical  spec imens  with section 
d i a m e t e r  of 10 m m .  T e m p e r a t u r e  di f ference in the spec imen was m e a s u r e d  by four c o p p e r -  Constantan 
the rmocouples  0.15 m m  in d i am e t e r  a t tached to the spec imen at 10 -mm dis tances .  The spec imen  was placed 
in a p r e p r o c e s s e d  Teflon cyl inder  with inner  d i a m e t e r  of 10 m m  and outer  d i a m e t e r  of 12 ram.  Coolers  were  
ins ta l led on both s ides  of the spec imen.  The ent i re  a s s e m b l a g e  was p laced in a he rmet ica l ly  sea led  cyl inder  
of IIChl8N9T s ta in less  s tee l  with inner  d i a m e t e r  of 14 m m  and outer  d i a m e t e r  of 17 m m .  Such an a r r angemen t  
p e r m i t s  placing the exper imen ta l  appara tus  in e i the r  a Dewar  f lask fil led with var ious  l iquids,  o r  a furnace ,  
or  within a magnet ic  field. Before  m e a s u r e m e n t s  the c h a m b e r  was evacuated to 10 -4 m m  Hg. 

The total  m a x i m u m  uncerta inty in the m e a s u r e m e n t s  is composed  of the uncer ta inty in determinat ion of 
geome t r i c  d imensions  (=Ll%), in t e m p e r a t u r e  difference de terminat ion  (• quantity of heat  t r ansmi t t ed  
(• with the sum reach ing  • 

F igure  2 shows a curve  of the t e m p e r a t u r e  dependence of h for  tin. At -50~ (convers ion  of a -  to fl-tin) 
d ~ / d t  changes value and sign, while at 100 ~ ( ~ - T  t rans format ion)  only the value of the t e m p e r a t u r e  coefficient  
changes .  Upon mel t ing ,  the t h e r m a l  conductivity d e c r e a s e s  by a f ac to r  of 1.9, and d~/dt changes sign f rom 
negat ive in the solid to posi t ive in the liquid. Exper imenta l  values  of ~ and the value of the t e m p e r a t u r e  coef-  
f icient  for  tin in the liquid phase  obtained in this study agree  sa t i s fac to r i ly  with the data of [11]. 

On the bas i s  of the expe r imen ta l  data obtained on the rma l  conductivity and r e s i s t iv i ty  the Lorentz  num-  
b e r  was ca lcula ted  for  var ious  t e m p e r a t u r e s  and is p re sen ted  in Table 2. 

Large  values  of Loren tz  num ber  as compa red  to theore t ica l  values  for  me ta l s  are  apparent ly  r e l a t ed  to 
t h e r o l e  of phonon t he rm a l  conductivity.  The par t ic ipa t ion  of phonons in heat t r a n s f e r  for  the var ious  modif i -  
cat ions of tin d i f fe rs .  Above 100~ the Loren tz  n u m b e r  d e c r e a s e s  monotonical ly  with inc rease  in t e m p e r a t u r e ,  
but changes discontinuously upon mel t ing.  In the liquid phase  L also has  a negative t e m p e r a t u r e  coefficient .  
According to [14], due to an inc rease  in d i s o r de r  of ion location with inc rease  in t e m p e r a t u r e  the role of 
phonon liquid sca t t e r ing  of e l ec t rons  i n c r e a s e s ,  which leads to a growth in e las t ic  sca t t e r ing  of the e lec t ron  
conductivity and a reduction in the Lorentz  number .  

Speed of Ul t rasound.  The l i t e r a tu r e  o f f e r s  l i t t le  in format ion  on the t e m p e r a t u r e  dependence of the  speed  
of u l t rasound  in sol id  tin, while the dependence a = f(t) in liquid t in  was inves t iga ted  in s e v e r a l  works .  Resu l t s  

TABLE 2. Lorentz  Number  vs T e m p e r a t u r e  for  Tin 

1-o, C - - !50 - - I00  --50 0 -~., 50 +150 " 2 5 0  +300  

2,56 2,98 3,40 3,49 3,50 3,48 3,04 2,93 L,~V ~ / deg 
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are shown in reviews [15, 16] and one notes fair ly good agreement between the data of various authors. 
In Figure 2 are presented curves of the temperature  dependence of the speed of ultrasound on tempera-  

ture  for  tin over  the tempera ture  range from room to 400~ Measurements were made in the present  study 
by the ultrasound impulse method, with relative accuracy of 0.3%. 

Upon transition to the liquid phase a decreases  by a factor of 1.27 t imes,  and da/dt maintains a negative 
value, as in the solid phase. 

In [16] it was noted that at 820~ the temperature coefficient of the speed of sound in tin decreases ,  
which is a consequence of structural  changes in the liquid tin. 
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